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Abstract. The thermodynamics of glass-forming systems can be expressed in terms of the density
of inherent structures, which correspond to the minima of the potential energy landscape. In
previous work this approach has been applied to Lennard-Jones-type systems, yielding a density
of inherent structures which to a very good approximation turned out to be Gaussian. In this work
we clarify whether the Gaussian distribution is just a consequence of the central-limit theorem or
whether it also contains information about the local structure of the glass-forming system.

1. Introduction

For understanding the physics of glass-forming systems it has proven to be helpful to analyse
their potential energy landscape [1–3]. The dynamics of the total system can be viewed
as the dynamics of a single point in configuration space, moving in the potential energy
landscape. According to a picture suggested, e.g., by Goldstein and Stillinger the potential
energy landscape can be formally divided into basins of attraction of the different local
energy minima (inherent structures, IS). These basins of attraction are separated by saddle
points. At sufficiently low temperatures, the timescale of intra-basin motion starts to exceed
the timescale of inter-basin motion by many orders of magnitude, so the overall relaxation
is mainly determined by saddle crossing. For a Lennard-Jones system it can be shown
that this separation of timescales takes place for a temperature close to the critical mode-
coupling temperature [4]. Very recently, several interesting features of the potential energy
landscape of structural glass formers have been elucidated [5–10]. Also, analytical treatment
is possible [11, 12].

Formally the configurational contribution to the total partition function can be written as

Z(T ) =
∫

dε z(ε, T ) (1)

with

z(ε, T ) = exp(−βε)G(ε)zbasin(ε, T ) (2)

where G(ε) denotes the density of IS, β the inverse temperature and zbasin(ε, T ) the average
partition function of a basin of attraction related to an IS with energy ε. The scenario described
above for low temperatures implies that the system resides nearly exclusively close to the
inherent structures. Therefore the thermodynamics of the system is related to properties of
the minima. Formally this is expressed by the fact that zbasin(ε, T ) is mainly determined by
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the energy of the IS as well as the harmonic force constants, i.e. zbasin(ε, T ) ≈ zharm(ε, T )

where the latter is the harmonic approximation, only involving the second derivatives νi of the
potential energy, evaluated for the respective IS, i.e.

zharm(ε, T ) = exp(−βε)yharm(ε) (3)

with

yharm(ε) ≡
〈∏

(2π/νi)
0.5

〉
. (4)

For reasons of simplicity we neglect a possible temperature dependence of yharm(ε) (see
reference [9] for details).

In principle, information about G(ε) can be obtained by systematic determination of all
IS [13–18]. Since the number of IS increases exponentially with system size this is not possible
for relevant system sizes (approximately N > 40 for a monatomic Lennard-Jones system). A
different approach to elucidating properties of the IS is to perform equilibrium MD (or MC)
simulations at temperature T and to regularly quench the system, i.e. find the nearby minimum
of the potential energy, thus probing properties of the IS accessible at this temperature [3,13,19].
The probability P(ε, T ) of finding an IS with energy ε with this algorithm is given by

P(ε, T ) = z(ε, T )/Z(T ). (5)

Very recently, this approach has been used to analyse the thermodynamics of binary Lennard-
Jones systems [7, 8] and a spin-glass system [20]. The primary results of the simulations of
structural glass formers can be expressed as the density of IS, i.e. P(ε, T ), and the average
phase space of the IS in the harmonic approximation as expressed by yharm(ε). If yharm(ε)
does not depend on ε, one simply has (combining equations (2) and (5))

G(ε) ∝ P(ε, T ) exp(βε) (6)

with a constant of proportionality which only depends on temperature. Therefore apart from a
normalization constant, G(ε) can be simply recovered from knowledge of P(ε, T ). Since for
a given temperature only a small fraction of the total energy range is probed, this analysis has
to be repeated for different temperatures and the different resulting curves have to be shifted
with respect to each other in order to yield an optimum overlap. In this way the ε-dependence
of G(ε) can be determined for a large ε-range. As explicitly shown in reference [9], a perfect
overlap of the curves obtained at different temperatures is also possible if the harmonic force
constants, i.e. yharm(ε), depend on the energy. The resulting curve, however, is no longer
the density of IS G(ε) but rather the effective density Geff (ε) ≡ G(ε)yharm(ε). It is the
latter quantity which is relevant for the thermodynamics. The scaling breaks down at high
temperatures where the harmonic approximation is no longer valid.

2. Simulations

For a model Lennard-Jones-type system we have performed simulations along the lines
described above and obtained the effective density Geff (ε) for different system sizes. Details
of the model and the simulations are described in reference [9]. We systematically varied
the system size between N = 20 and N = 160 and the temperature between T = 2.5
and T = 0.667 (the mode-coupling critical temperature for this model can be estimated to be
0.56 [9,21]). Whereas the systems with sizeN = 20 andN = 40 display significant finite-size
effects, the larger systems (N � 60) are devoid of major finite-size effects in this temperature
range. In figure 1 we display the energy dependence ofGeff (ε) forN = 60 andN = 120. The
different parts of the curve, obtained for the different temperatures, scale very well for the three
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Figure 1. Determination of Geff (ε) on the basis of P(ε, T ) for N = 60 and N = 120. The
individual curves have been shifted in order to obtain an optimum overlap. The representation is
such that the fitted Gaussian function has its maximum at zero and a variance of one. The values
of εmax and σ for both N -values are given in the text.

lowest temperatures, whereas the scaling breaks down for the two higher temperatures. In any
event,Geff (ε) is very well defined for a large energy range. To a very good approximation, for
both system sizes Geff (ε) can be fitted very well by a Gaussian distribution with a maximum
for ε = εmax and variance σ 2. From harmonic fits of logGeff (ε) we obtain εmax/N = −5.61
and σ 2/N = 0.3 for N = 60 and εmax/N = −5.65 and σ 2/N = 0.27 for N = 120. In
figure 1 an appropriate normalization of the two curves has been chosen such that the two
curves agree perfectly.

As extensively discussed in reference [9], the thermodynamics in the high-temperature
regime (T = 1.66, 2.5) is dominated by anharmonic contributions, i.e.

zanh(ε, T ) ≡ z(ε, T )/zharm(ε, T ) �= 1

so the scaling breaks down. Interestingly, for the three lower temperatures also the analysis of
the specific heat has clearly revealed the presence of anharmonic contributions [9]. If, however,
zanh(ε, T ) only shows a very weak ε-dependence, these anharmonic contributions scale out
in the construction of Geff (ε). Obviously, this is the case for our system. We note that the
ε-dependence of yharm(ε) is rather weak, so Geff (ε) ≈ G(ε) [7, 9].

Furthermore, we have determined the variance σ 2
P (T ) of P(ε, T ). The results are shown

in figure 2 (here also for different values of N in addition to 60 and 120). Again, the data
at the two higher temperatures are dominated by anharmonic contributions. The important
observation is that apart from statistical variations the variance does not show a systematic
trend at lower temperatures. It is easy to check that for a purely Gaussian distribution one
expects σ 2

P (T ) = σ 2 = constant. Furthermore, one has to a good approximation σ 2
P ∝ N in

the limit of large system sizes.
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Figure 2. The variance σ 2
P (T ) of P(ε, T ) calculated for different temperatures and system sizes

between N = 60 and N = 160.

3. Why Gaussian?

After examining the results of our simulation, one may ask to what degree the Gaussian
behaviour ofGeff (ε) is just a consequence of the central-limit theorem or reflects information
about the distribution of energies of inherent structures. In the following analysis we will end
up with an upper bound for the non-Gaussian parameterα2 of the elementary distribution which
describes the energy of the IS on a local scale. The meaning of the elementary distribution
will be discussed further below. We derive two different criteria for estimating an upper bound
for α2. First, we explicitly calculate the deviations of Geff (ε) from a Gaussian in first order.
Second, we analyse the temperature dependence of the variance of the distributions P(ε, T ).
At the end we discuss the sensitivity of the two criteria.

3.1. Modified Gaussian distribution

We consider a probability variable y which is composed ofM independent probability variables
xi , i.e.

y =
M∑
i=1

xi. (7)

The xi are characterized by the same distribution r(x) . For reasons of simplicity we assume
that r(x) is symmetric around x = 0. Later on we identify y with the total potential energy of
the inherent structures and xi with the local contribution to the potential energy. The following
analysis of non-Gaussian effects is similar to the derivation of the central-limit theorem. The
total distribution function p(y) can be written as

p(y) =
∫

dx1 · · · dxM p(x1) · · ·p(xM)δ
(
y −

M∑
i=1

xi

)
. (8)
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Using the standard tricks of rewriting the δ-distribution and introducing the variable z = y/
√
M

one finally ends up with

p(z) ∝
∫

dq exp(−iqz)

{ ∫
dx r(x) exp(iqx/

√
M)

}M
. (9)

Rewriting the bracketed term {· · ·}M as expM ln{· · ·}, the logarithm can be expanded in inverse
powers of M , yielding

p(z) ∝
∫

dq exp(−iqz) exp[−s2q2/2 + α2s
4q4/8M + O(M−2)] (10)

with the variance

s2 ≡ 〈x2〉 (11)

and the non-Gaussian parameter

α2 ≡ 〈x4〉 − 3s4

3s4
(12)

where the average is over the elementary distributions r(x). Note that one has σ 2 = Ms2.
For large M the final term can be expanded and the integration over q can be performed. This
results in

p(z) ∝ exp[−z2(1 + 3α2/M)/2s2 + α2z
4/8Ms4 + O(M−2)]. (13)

Rewriting this expression again in terms of y, and identifying y with the total potential energy
ε, one obtains for large M

Geff (ε) ∝ exp{−M[((ε − εmax)/M)2/2s2 + α2((ε − εmax)/M)4/8s4]}. (14)

For a Gaussian distribution the average value of the energy of IS 〈ε〉T at temperature T is
given by

〈ε〉T = εmax − σ 2

T
. (15)

The ratio of the fourth-order and the second-order terms of log(Geff (ε)) evaluated for ε = 〈ε〉T
is given by

α2s
2

4T 2
. (16)

In the case where at a given temperature T the deviations of a quadratic fit of log(Geff (ε)) are
less than δg at ε = 〈ε〉T , one obtains an upper bound for α2 via

|α2| < 4δg(T /s)
2. (17)

Application of equation (17) requires that the determination of the quadratic term of
log(Geff (ε)) is performed around ε ≈ εmax where non-Gaussian corrections are irrelevant.
Unfortunately, in exactly this region the effective density is only poorly defined. The reason
is that IS with energy ε ≈ εmax are only visited at high temperature, so their quantification is
always hampered by the presence of anharmonic effects; see figure 1. Therefore we present a
second criterion which does not require any fitting.
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3.2. Variance of P (ε, T )

Another upper bound forα2 can be obtained from analysis of the variance ofP(ε, T ), i.e.σ 2
p(T ).

Using the first and second moment (n = 1, 2),

An(T ) ≡
(∫ ∞

0
dx xnr(x) exp(−βx)

)/(∫ ∞

0
dx r(x) exp(−βx)

)
(18)

we can define the temperature dependence of the variance s2(T ) via

s2(T ) ≡ A2(T )− A1(T )
2. (19)

Then a straightforward calculation yields via a high-temperature expansion

s2(T ) = s2 +
3α2s

4

2T 2
(20)

which is related to σ 2
P (T ) via

σ 2
p(T ) = Ms2(T ). (21)

For finite α2 one expects that, in cooling, the value of σ 2
p(T ) is constant at high temperatures

and changes at lower temperatures. From the observation that

|σ 2
p(T )− σ 2

p(T = ∞)|/σ 2
p(T = ∞) < δp

one can again derive an upper limit for the non-Gaussian parameter:

|α2| < (2/3)(T /s)2δp. (22)

Note that σ 2
p(T = ∞) denotes the variance that one would have at infinite temperature without

any anharmonic contributions.

3.3. General remarks

Before application for numerical data one has to specify the meaning of the elementary
distribution and thus of M . The value of M is of importance for the present analysis since the
value of s2 has to be determined from the numerically accessible value of σ 2 via s2 = σ 2/M .
If the particles were not interacting (think of a spin model without spin–spin interaction), r(x)
would be directly identified with the single-particle energy distribution and M = N . For
structural glasses (as well as for spin glasses) one expects the energy of adjacent particles
to be no longer uncorrelated, with the result that the elementary level corresponds to small
regions, containing a few particles, rather than single particles, implying M < N . Due to the
disorder, these energetically correlated regions are probably rather small. In what follows we
will choose M = N . This choice implies that the estimate of the upper bound for α2 that we
will obtain is too conservative in the case of significant spatial energy correlations.

4. Analysis of simulated data

Here we explicitly analyse that data for N = 60 and N = 120. One clearly observes that
within statistical noise no systematic trend is present which would indicate the presence of
non-Gaussian effects. A conservative estimate is that log(Geff (ε))σ

2/N2 deviates by at most
0.002 from the fitted parabola evaluated at ε = 〈ε〉T (the broken line in figure 1). This yields
δg = 0.002/0.044 = 0.045 and δg = 0.002/0.037 = 0.054 for N = 60 and N = 120,
respectively. Application of equation (17) for the lowest temperature then yields |α2| < 0.3.

For application of the second criterion we first have to specify to which level the variance
does not change with temperature. On the basis of the statistical uncertainties one can estimate
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δp < 0.2. Application of equation (22) then yields |α2| < 0.2. As discussed above, the second
estimate is more reliable since no fitting is involved. Averaging the data for different N the
statistical error would be even smaller, resulting in a smaller upper bound for |α2|.

It may be interesting to compare our results with the extreme case of a bimodal distribution
of local energies, corresponding to the presence of solid-like and liquid-like regions with local
energies Es and El , respectively, expressed by

r(x) = psδ(x − Es) + (1 − ps)δ(x − El).

At high temperatures it will be much more likely to have a liquid-like configuration, which
implies ps � 1. In this limit one obtains α2 = 1/(3ps) � 1. Obviously, our numerical results
are not compatible with this kind of model. A formal analysis of this model would also involve
additional correction terms since r(x) is no longer symmetric. These terms, however, would
render the discrepancy even larger. Conversely, one can state that for systems characterized
by sufficiently large values of α2, it is indeed possible to observe strong deviations from a
purely Gaussian behaviour. For α2 = 1 one would for example expect σ 2(T = 0.667) to have
changed by as much as a factor of two as compared to its value at high temperatures.

In summary, the large degree of Gaussianity, observed in recent simulations of Lennard-
Jones systems, is only partly due to the central-limit theorem and also contains important
information about the properties the glass-forming system on a local level; it may, for the
present system, render inapplicable some models which involve large non-Gaussian effects on
a local scale.
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